UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

EFARKING & LABUR

Survey Challenges and Challenges to Identification

illinois.edu

Overview

- Internal vs. external validity
- Sampling methods
- Summary of methods
- Reflection exercise

Internal vs. External Validity

Internal vs. External Validity

- This week we've emphasized internal validity
- For policy, external validity is crucial
 - Rodrik, 2009. "We Shall Experiment, but How Shall We Learn?"
 - Is it better policy to charge for malaria bed nets or give them out for free? Study in W. Kenya
 - Find those who received them for free resulted in higher prevalence and a higher usage rate
- Does this answer the question?

Bed Net Study

- Area where social marketers had been very active—spread of information
- Bed nets offered to women seeking prenatal care in clinics
- Experiment supplied bed nets to the clinics
- Difference between subsidized price and free was very small

External Validity

- We only know that this experiment worked in this setting
- We don't know which contextual factors are relevant
- How do we build external validity?

Sampling Methods

What Do We Mean by Representative?

- The donor wants to know the adoption rate of a new technology.
- You have been asked to conduct a nationally representative survey to determine the adoption rate.
- What qualifies as nationally representative?

Example: Groundnut Adoption in Tanzania

- Need to measure adoption of new groundnut varieties by surveying a nationally representative sub-sample of the population.
- Do we sample from all households in Tanzania?
- Do we sample from all rural households?
- Do we sample from all rural households in areas that are suitable for adoption?

Example: Groundnut Adoption in Tanzania

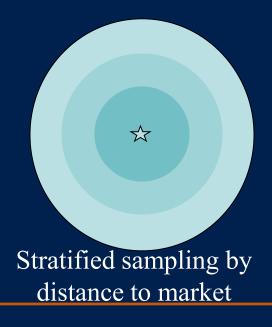
- We may want to weight our sample to ensure it is representative.
- Do we weight based on population?
 - Total people?
 - Percentage of people in a region?
- Do we weight on arable land?
 - Total arable land?
 - Percentage of arable land in a region?
- Do we weight at national or sub-national level?

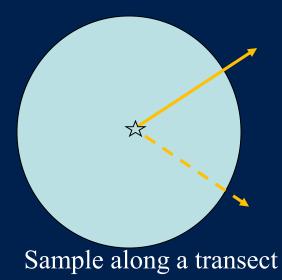
Example: Groundnut Adoption in Tanzania

Region	Villages by groundnut area	Villages by % land to groundnut	Villages by groundnut growers
Shinyanga Region	27	40	22
Tabora Region	25	9	21
Dodoma Region	20	14	14
Rukwa Region	9	11	7
Mbeya Region	9	4	12
Mtwara Region	7	12	9
Mwanza Region	5	14	6

Sample design

- E.g. A: 10 households per 300 villages?
 - B: 30 households per 100 villages?
- Option A: good geographic distribution, but cannot say anything about village average
- Option B: lower geographic distribution, but can say something about village averages


...Depends on the question



Sample the population or sample the geography

e.g. Research question: how does distance to agrodealer affect improved seed adoption?

May not want to randomly sample over households (may not have sufficient spatial variation)

Sampling Weights

Name	CG	Asia	Gender (F=1)	Total Research Staff	Sampling Weights
Nelissa	CropTrust	0	1	30	30/675
Taj	IFPRI	1	0	600	600/675
Seng	WorldFish	1	0	400	400/675
Sven	WorldFish	0	0	400	400/675
Anurag	CIMMYT	1	0	1250	1250/675
Silvia	ILRI	0	1	650	650/675
Dilli	CIMMYT	1	0	1250	1250/675
Jeff	ICRISAT	0	0	820	820/675
Average		50%	25%	675	
Weighted Average		65%	12.6%		

Sampling Weights

- The probability of an observation coming from a specific group within the population to extrapolate from sample to population.
- Easy if only one grouping variable
- May care about multiple dimensions: education level within each CGIAR center
- Can split into population in multiple subsets

Summary of Methods

What have we learned this week?

- What is impact assessment?
- Methods
 - Randomized control trials
 - Matching
 - Difference-in-differences
 - Instrumental variables
 - Econometric techniques for panel data
 - Regression discontinuity design

Planning an evaluation

- What is the experiment I would run if I could?
- Can I do an experiment?
- Can I get a counterfactual?
- Do I have more than one round of data for both treatment and control?
- Can I match? Can I assume selection was not driven by unobservables?
- Was there some rule or random aspect by which the program was allocated?

Randomized Control Trials

- Advantages
 - Solve selection problem through random assignment
 - Can be related to economic theory
 - Flexible
- Disadvantages
 - Must be planned in advance
 - Can be expensive

RCTs — Challenges for the researcher

- Requires funding for baseline and follow-up
- Achieving sufficient power
- Addressing spillover effects
- Getting NGO/government agency to randomize
- And that they actually do randomize!

Matching

- Advantages
 - Can use existing data
 - Straightforward to do in Stata
 - Can be used with diff-in-diff
 - Can be used to match units for RCT
- Disadvantages
 - Usually does not solve selection problem by itself
 - Assumes that selection is on observables only

Matching — Challenges for the researcher

- Think about how you want to match—within or across villages
- Results can be sensitive to choice of the bandwidth

Difference-in-Differences

- Advantages
 - Deals with selection problem when related to time-invariant error term
 - Can be done as a t-test or in a regression context
 - Can be combined with matching
- Disadvantages
 - Need a baseline
 - Need a control group
 - Biased if treatment correlated with time varying error term

DiD — Challenges for the researcher

- Parallel trends assumption
- Need to establish that treatment and control groups were similar and following the same trends
- Can't do this with a statistical test—need to make an argument
 - Data a period before the baseline
 - Graphing, etc.

Instrumental Variables

- Advantages
 - Corrects for selection on time invariant and time variant variables
 - Can do this with just a cross section
- Disadvantages
 - Very difficult to find a valid instrument
 - Need to make a convincing argument about validity
 - IV has to be correlated with treatment, but not with the error term in the outcome regression

IV — Challenges for researchers

- Finding a convincing instrument
- Was there a random aspect to the policy implementation?
- For CGIAR center researchers especially—you can't let availability of a cool IV drive the work that you do.

Regression Discontinuity

- Advantages
 - Unbiased estimate at discontinuity
 - Can deal with selection
 - Eligibles not excluded from treatment
- Disadvantages
 - LATE estimator—may or may not be of interest
 - Power issues—need many observations at threshold
 - Can be sensitive to functional form

RD — Challenges for researchers

- You need a threshold for eligibility
- Sample size issues around threshold point
- Cutting edge method that is evolving rapidly need to keep informed about the state of the art
- Agricultural applications—spillovers, lack of strict eligibility requirements for programs
- Eligibility requirements known—people respond to criteria

Take a moment to pair and share

- Please pair with somebody who is not from your center, perhaps somebody you haven't talked to yet this week.
- Give one example of how you will apply something that you learned this week when you return to your job

Final thoughts

- Think about the audience for the impact assessment
- Plan for evaluation from the beginning of the project
 - Need to budget for control group, evaluation
- Qualitative data collection can be very useful
- Impact evaluation is an art as well as a science
 - Choosing appropriate method
 - Demonstrating that assumptions hold

