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Advanced Methods in Impact Assessment Workshop 
 
Day 1: The Creation of Knowledge through Impact Assessments 
This is the first of our data exercises that will give you a chance to work with real data and apply the 
techniques you learned during the morning lecture sessions. For most of the days we will be using the 
Village Dynamics of South Asia (VDSA) panel data set collected by ICRISAT. We will utilize the 
recent high frequency parcel level production data from households in India. For the data exercises 
concerning RCTs we will use data from a real RCT on the effects of marketing in encouraging 
households to purchase index insurance. This RCT was conducted in conjunction with ICRISAT, again 
in India. 
 
To get started, we will take the “raw” VDSA data and prepare it for analysis. This process will be useful 
for two reasons. First, it will provide you with a chance to familiarize (or re-familiarize) yourself with 
R. Second, since we will be using this data throughout the workshop, these initial exercises will get the 
data “regression ready” so that we will not need to spend time on Day 3 or Day 4 preparing a data set 
for regressions. 
 
There are three objectives for today’s exercises: 

1. Become familiar with R and the data we will analyze throughout the workshop. 
2. Prepare data for analysis on subsequent days. 
3. Use real data to illustrate the role of confounding factors in impact assessment. 

 
Introduction to R 
To get started, open the file 1C – R script.R with Rstudio. The starting screen should look something 
like this: 
 

 
 
In an R script, everything in a line after a # character is read as a comment. Comments are used to 
explain parts of a script and facilitate documentation. By default, Rstudio highlights comments in light 
green. 
 
The first actual command of the script is the line:  
 

rm(list=ls()) 
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This command clears the memory before running anything on the script, which is always a good 
programming practice. To run a specific line in Rstudio, highlight the whole line and hit Ctrl+Enter 
 
The following command lines install and load the packages required for this exercise: 
 

install.packages("readstata13") 
install.packages("ggplot2") 
library("readstata13") 
library("ggplot2") 

 
The function install.packages() downloads and installs a package from the internet. The 
library() function loads that particular package into the current session. 
 
Packages are a very important part of R. The basic default installation already provides some limited 
functionality. But the real power of R lies in the large community of independent developers who are 
constantly implementing new packages to the language. 
 
Now let’s read in the data 
 

df <- read.dta13("VDSA_Prod_Data.dta") 
 
The above command line reads the file VDSA_Prod_Data.dta and assigns its information to the object 
df. The pair of characters <- is the left assignment indicator of R. It indicates that all the information 
to the right of it is assigned to the object to its left. There is nothing special about the name df, it is just 
an abbreviation for data frame. If you prefer, you can use any other name for it. 
 
These data are parcel level production data. The data set contains parcel level observations on inputs 
and outputs for wheat. It also contains observations on household level characteristics and a few 
observations of village level characteristics. As you move through the data set, can you identify which 
observations are at the parcel level, household level, and village level? 
 
The file VDSA_Prod_Data.dta was created on the specific file format used by Stata, so some of its 
features are not immediately available when loaded in R. For example, it is not as easy as in Stata to 
access the variable labels. The following commands extract the variable labels from the original .dta 
file and merge them with the variable names from the original data frame. 
 

labels <- as.data.frame(cbind(colnames(df), 
                  attributes(df)$var.labels)) 

colnames(labels) <- c("variable", "label") 
 
From the above commands, an additional data frame is created with the variable names and their 
corresponding labels. 
 
To have a general overview of the variables in your data set, you can take advantage of the “Data” pane 
in the “Environment” window of Rstudio, which is usually located as the right-upper quadrant of the 
screen. If you click in blue arrow just to the left of a data frame name (in our case, df), it will open a 
list with all variables within it and some basic information about each variable, such as name, format 
and the first few observations. 
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` 
 
To view all the data in a data frame, you can use the function View(). Note that the “V” in View is an 
uppercase letter. R is a case sensitive language, so you must be very careful with the use of uppercase 
and lowercase in variable names and functions. Therefore, if you run the command View(df), it will 
open the whole data in the main Rstudio window: 
 
The function summary() can be used to display the basic summary statistics of a variable, including 
means, quartiles and number of missing observations. If you ask for the summary() of a whole data 
frame, the summary statistics are calculated for all variables in the data set, for example: summary(df) 
 
To see the summary of a particular variable, you can use the summary function indicating the data frame 
of your variable followed by a $ character and the name of the variable you want. For example, for the 
summary of rain, we write: summary(df$rain). 
 
Sometimes, you may be interested in looking at summary statistics for a subset of observations, not for 
the entire data set. There are several ways to achieve this outcome in R. One possibility is to use the 
by() function. For example, we can look at the output variable by gender of the household head: 
 

by(df$output, df$genderH, FUN=summary) 
 
The first argument of the function is the object we want to evaluate, in our case the output variable. 
The second argument is the categorical variable used to subset, for which we use the variable genderH. 
Finally, the last argument is the function to be applied for each group, which in our case is the summary 
function. 
 
To summarize a variable by the combination of multiple categorical variables, you can create a 
temporary concatenated variable as the second argument of the by() function using the paste() 
function. For example, to summarize output by each combination of genderH and farm_cat you 
can write: 
 

by(df$output, paste(df$genderH, df$farm_cat), FUN=summary) 
 
Another important function for summarizing categorical variables is the table() function. For 
example, to see the distribution of the categorical variable farm_cat you can use: 
 

table(df$farm_cat) 
 
Use the by() function to summarize the variable ageH by the combination of genderH and farm_cat. 
Use table() to tabulate the categorical variable genderH. 
 
There are other commands that can be useful for learning more about your data: 
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• nrow() can be used to count the number of observations in a data set. It is also possible to 
group by another variable. 

• duplicated() indicates duplicated observations in the data. You can use it to drop duplicate 
observations like the following: df <- subset(df, !duplicated(df)) 

• unique() tells you the unique values of a particular variable. to count the number of unique 
values of a variable, you could use: length(unique(df$vil_id)) 

 
Use the length(unique()) command to determine how many unique parcels are in the data. How 
many distinct households and villages? 
 
Variables and observations of a data set can be selected using the subset() command. For example, 
to keep only observations where some variable var1 > 100, you could write: 
 

df <- subset(df, var1 > 100) 
 
Let’s begin to manipulate the data. First, tabulate survey year: table(df$sur_yr). Notice that survey 
years 2009 and 2013 have fewer observations than the other years. This is because the VDSA survey 
only captured half a year of data in 2009 and only recently published the remainder of 2013. So, drop 
all observations that come from 2009 and 2013. 
 

df <- subset(df, sur_yr %in% c(2010, 2011, 2012)) 
 
The characters %in% represent the mathematical expression “belongs to”. The function c() creates a 
vector, so in the above expression it is used to create a vector with elements 2010, 2011 and 2012. 
Therefore, the complete command above can be read as: df receives the subset of df where the variable 
sur_yr belongs to the set [2010, 2011, 2012]. 
 
R is a very powerful tool for producing visual analysis. A very popular package used to create plots and 
graphs is ggplot2. The syntax may seem complicated at a first glance, but due to its flexibility, it is a 
tool that is certainly worthwhile learning. For example, to create the histogram of a single variable, e.g. 
price, you can use the command: 
 

ggplot(data = df) + 
  geom_histogram(aes(x = price), binwidth = 1) 

 
The process is similar to create a scatter plot. Instead of geom_histogram you can specify a 
geom_point and include an y variable to the aes().For example, to create a scatter of price and 
value you could write: 
 

ggplot(data = df) + 
  geom_point(aes(x = price, y = value)) 
 

1. Check the production relationships in the data by creating scatter plots that show the 
relationship between output and the inputs plot_area, lab_q, irr_q, and pest_v. Create 
scatter plots for each of the four relations. What do these plots tell you? 

 
Creating variables in a data frame in R is easy. All you need to do is to assign some value to a variable 
name that does not exist in the data frame. For example, to create a variable called var1 in data frame 
df and assign the value of 1 to all observations, you could right: 
 

Df$var1 <- 1 
 
In production economics, we generally want to take log transformations of the data. This allows us to 
estimate Cobb-Douglas (or Translog) production functions while also allowing us to interpret 
coefficient estimates as elasticities. However, as you may have noticed from the scatter plot of pesticide, 
there are a lot of zeros in the data. This creates a problem since log(0) is undefined. One way to deal 
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with the problem of taking the log of a zero is to use the Inverse Hyperbolic Sine Transformation. The 
equation for this transformation is: log(𝑥𝑥)  =  log(𝑥𝑥 +  �(𝑥𝑥2 + 1)). This solves the problem of log(0) 
without adding an arbitrating number to the value of the variable. 
 
Now, let’s create variables for output and each input in per hectare terms using the Inverse Hyperbolic 
Sine Transformation. R includes a built in function for calculating the Inverse Hyperbolic Sine 
Transformation, asinh(). For example, to create a variable called lny with the log of output divided 
by plot_area, we can run: 
 

df$lny <- asinh(df$output/df$plot_area) 
 
Now, create similar variables for all inputs and call them lnl, lnf, lni, lnm, and lnp. 
 
Label the variables you just created with labels that include the unit of measure, i.e., (kg/ha) in the case 
of fertilizer. The following command lines assign a new label to each new variable and append it to the 
original labels data set. 
 

new.vars <- c("var1", "lny", "lnl", "lnf", "lni", "lnm", "lnp") 
new.labels <- cbind(new.vars, c("variable with ones", 
                "log of output per area (Rs/ha)", 
                "log of labor per area (Hr/ha)", 
                "log of fertilizer per area (kg/ha)", 
                "log of irrigation per area (Lt/ha)", 
                "log of pesticid per area (Rs/ha)")) 
colnames(new.labels) <- c("variable", "label") 
labels <- rbind(labels, new.labels) 

 
Finally we can now run regressions in R. Basic OLS Regressions in R are run in the following form: 
 

lm(indep_var ~ dep_var1 + … + dep_varN, data = data_frame_name) 
 
Where the first set of arguments are the regression formula and the second indicates the data frame to 
be used. To visualize a detailed regression output table, you can assign the regression to an object and 
call the summary() of it: 
 

r1 <-  lm(indep_var ~ dep_var1 + … , data = df) 
summary(r1) 

 
2. Run a simple regression with log labor, fertilizer, irrigation, mechanization, and pesticide as 

independent variables and log yield as the dependent variable. How do you interpret the point 
estimates on each variable? 

 
Before we move on, let’s create a binary indicator for irrigation use called irr that equals 1 if the parcel 
under observation had irrigation greater than zero and equals zero if the parcel had no irrigation. 
 

df$irr <- ifelse(df$irr_q > 0, 1, 0) 
 
This will be our “treatment” variable. Let’s also create log transformed variables of aindex, lindex, 
tot_acre, and dist using the Inverse Hyperbolic Sine. Call them lnaindex, lnlindex, 
lntot_acre, and lndist. 
 
To save this data frame as .csv file called VDSA_Prod_Data_Ref.csv, you can use the following 
command: 
 

write.csv(df, "VDSA_Prod_Data_Ref", row.names = FALSE) 
 
This will be the file we return to throughout the week. 
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The Challenge of Establishing a Causal Effect 
To provide a sense of the difficulty in establishing causal effects, we are going to look at our data in 
two different ways. First, we are going to compare the effect of a hypothetical irrigation intervention 
on those who received the irrigation treatment versus those who did not. This is our Within/Without 
comparison. Second, we are going to compare the effect of the irrigation treatment on households before 
they received the treatment and after they received the treatment. This is our Before/After comparison. 
 
Within/Without Comparison 
Using the transformed data frame that you just saved, create a new data set that contains only data from 
sur_yr=2011. Call it df_2011: 
 

3. Generate a table (using the by() function) that shows the yields for those with irrigation 
treatment and those without the irrigation treatment. What do you learn from the table about 
the impact of the irrigation treatment on the log of yields? 

4. Do a t.test to compare the mean yield by households who received the irrigation treatment 
with that of the control. What does the test indicate? Is this estimate the intention to treat effect, 
the effect of treatment on the treated, or the average treatment effect? Explain. The code is: 
 

t.test(output~irr, data = df_2011) 
 

5. Run a regression that includes only the irrigation treatment variable and log of crop yield as the 
outcome. What is the result? What is the marginal effect of having irrigation on crop yield? Is 
this the impact of the irrigation treatment? Why or why not? 

6. What control variables might we want to include in a regression to determine the impact of the 
irrigation project? 

 
Now add the following control variables: lnl, lnf, lni, lnm, lnp, ageH, genderH, sizehh, aindex, 
lindex, tot_acre, and dist. You might want to log transform that variables aindex, lindex, 
tot_acre, and dist but this is not necessary. Our dependent variable should be lny. Note that we 
will refer to this set of 11 variables as our “standard set of control variables” in subsequent exercises. 
 

7. After adding the control variables, how do our results change? What does the point estimate 
tell us? Is the coefficient on irr the unbiased effect of the treatment? What else could it be? 
 

Before/After Comparison 
Return to the data frame used before the Within/Without comparison (df). Using this data set create a 
new data set that contains only households that received the irrigation treatment. To do this, run the 
following set of commands: 
 

 # drop observations from 2012 
 df <- subset(df, sur_yr != 2012) 
 
 # count observations per parcel 
 df$obs <- ave(df$var1, df$prcl_id, FUN=sum) 
  
 # identify treated parcels in 2011 
 df$tr_2011 <- ifelse(df$sur_yr == 2011 & df$irr == 1, 1, 0) 
  
 # assign 2011 treatement status to observations in both years 
 df$tr_2011 <- ave(df$tr_2011, df$prcl_id, FUN=sum) 
  
 # subset of observations treated in 2011 
 df_tr2011 <- subset(df, tr_2011 == 1) 
  
 # keep only variables observed in both years 
 df_tr2011 <- subset(df_tr2011, obs == 2) 
  
 # make sure observations are balanced  
 table(df_tr2011$irr) 
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8. Generate a table (using the summary command) that shows the average yields for households 

before they received the irrigation treatment and average yields after the irrigation treatment. 
What do you learn from the table about the impact of the irrigation treatment on yields? 

9. Do a t.test to compare the mean yield by households before and after the irrigation treatment. 
What does the test indicate? Is this estimate the intention to treat effect, the effect of treatment 
on the treated, or the average treatment effect? Explain. 

10. Run a regression that includes only the irrigation treatment variable and the log of crop yield 
as the outcome. What is the result? What is the marginal effect of having irrigation on crop 
yield? Is this the impact of the irrigation treatment? 

11. Now add the standard set of control variables. How do our results change? What does the point 
estimate tell us? Is the coefficient on irr the unbiased effect of the treatment? What else could 
it be? 
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